Top from left to right: Conrad Lewis, Fenglai Liu, Myranda Uselton, Matthew Wang.
 Bottom from left to right: Yu Jianguo, Jing Kong, Yiting Wang, Dwayne John

Research Highlight

Systems with strong correlation such as molecules with significant multiconfiguration characters impose a major challenge to density functional theory (DFT). We have recently published a new general functional named KP16/B13 towards solving this problem. It is based on adiabatic connection and Becke'13 and contains a single term that handles the nondynamic correlation of all strength, from weak to strong. We have also implemented other 4th-rung functionals, namely B05, PSTS, and B13 that are designed to treat correlation due to delocalized exchange in highly correlated systems. Below is a graph comparing the new functional with various other functionals for a disassociating nitrogen molecule. The paper can be downloaded here.



Research Interests

The main theme of our research is the development and application of computational methods for the study of many-atom systems based on electronic structure theory. Thus far, we have concentrated on improving the efficiency (computing speed) and accuracy of density functional theory (DFT). DFT is the most widely applied ab initio QM-based method because it provides a framework that strikes the best balance between accuracy and computational scaling. The areas of our research includes: (1) DFT algorithms; (2) DFT functionals; (3) high-performance computing (parallel, GPU); (4) applications of DFT to molecular biology, chemical engineering, and materials research.

Publications

  1. F. Liu, J. Kong, "Efficient Computation of Exchange Energy Density with Gaussian Basis Functions", J. Chem. Theory Comput., 2017, [PDF]
  2. F. Liu, T. Furlani, J. Kong, "Optimal Path Search for Recurrence Relation in Cartesian Gaussian Integrals", J. Phys. Chem., 120, 10264 (2016) [PDF]
  3. J. Kong and E. Proynov, "Density Functional Model for Nondynamic and Strong Correlation", J. Chem. Theor. Comp., 12, 133 (2016) [PDF]
  4. E. Proynov, F. Liu, Z. Gan, M. Wang and J. Kong, "Density-functional approach to the three-body dispersion interaction based on the exchange dipole moment", J. Chem. Phys., 143, 084125 (2015). [PDF]
  5. S. Li, J. D. Combs, O. E. Alharbi, J. Kong, C. Wang and R. M. Leblanc, "The 13C Amide I Band Is Still Sensitive to Conformation Change When the Regular Amide I Band Cannot Be Distinguished at the Typical Position in H2O", Chem. Comm., 51, 12537 (2015). [PDF]
  6. Z.-N. Chen, K.-Y. Chang, J. K. Pulleri, J. Kong, and H. Hu, "Theoretical Study on the Mechanism of Aqueous Synthesis of Formic Acid Catalyzed by [Ru 3+ ]-EDTA Complex", Inorg. Chem., 54, 1314 (2015). [PDF]
  7. Y. Shao, Z. Gan, et al, "Advances in molecular quantum chemistry contained in the Q-Chem 4 program package", Mol. Phys., DOI:10.1080/00268976.2014.952696. [PDF]
  8. E. Proynov, F. Liu, and J. Kong, "Analyzing effects of strong electron correlation within Kohn-Sham density-functional theory", Phys. Rev. A., 88, 032510 (2013). [PDF]
  9. F. Liu, E. Proynov, J. Yu, T. R. Furlani, and J. Kong, "Comparison of the Performance of Exact-Exchange-Based Density Functional Methods", J. Chem. Phys., 137, 114104 (2012). [PDF]
  10. N. N. Nasief , H. Tan, J. Kong and D. Hangauer, "Water Mediated Ligand Functional Group Cooperativity: The Contribution of a Methyl Group to Binding Affinity is Enhanced by a COO- Group Through Changes in the Structure and Thermodynamics of the Hydration Waters of Ligand-Thermolysin Complexes", J. Med. Chem., 55, 8283 (2012). [PDF]
  11. A. Biela, M. Khyat, H. Tan, J. Kong, A. Heine, D. Hangauer, and G. Klebe, "Impact of Ligand and Protein Desolvation on Ligand Binding to the S1 Pocket of Thrombin", J. Mol. Bio., 418, 350 (2012). [PDF]
  12. C. Chang, Y. Shao, J. Kong, "Ewald Mesh Method for Quantum Mechanics Calculations", J. Chem. Phys., 136, 114112 (2012). [PDF]
  13. M. Freindorf, T. Furlani, J. Kong, Vivian Cody, Faith B. Davis and Paul Davis, "Combined QM/MM Study of Thyroid and Steroid Hormone Analogue Interactions with Alphavbeta3 Integrin", J. Biomed. Biotech., 2012, 959057 (2012). [PDF]
  14. E. Proynov, F. Liu, Y. Shao, J. Kong, "Improved  Self-consistent and Resolution-of-identity Approximated Becke'05 Density Functional model of Nondynamic Electron Correlation," J. Chem. Phys., 136, 034102 (2012). [PDF]
  15. E. Proynov, F. Liu, J. Kong, "Modified Becke'05 Method of Nondynamic Correlation in Density Functional Theory with Self-Consistent Implementation", Chem. Phys. Lett., 525-526, 150 (2012). [PDF]
  16. C. Chang, N. J. Russ, J. Kong, "Efficient and Accurate Numerical Integration of Exchange-Correlation Density Functionals", Phys. Rev. A., 84, 022504 (2011). [PDF]
  17. N. J. Russ, C. Chang, J. Kong, "Fast Computation of DFT Nuclear Gradient with Multiresolution", Can. J. Chem., 89, 639 (2011). [PDF]
  18. A. Ghysels, H. L. Woodcock III, J. D. Larkin, B. T. Miller, Y. Shao, J. Kong, D. V. Van Neck, V. Van Speybroek, M. Waroquier, B. R. Brooks, "Efficient calculation of QM/MM frequencies with the Mobile Block Hessian", J. Chem. Theor. Comp., 7, 496 (2011). [PDF]
  19. F. Liu, Z. Gan, Y. Shao, C. Hsu, A. Dreuw, M. Head-Gordon, B. T. Miller, B. R. Brooks, J. Yu, T. R. Furlani and J. Kong, "A parallel implementation of the analytic nuclear gradient for time-dependent density functional theory within the Tamm-Dancoff approximation", J. Mol. Phys., 108, 2791 (2010).
  20. E. Proynov, Y. Shao, J. Kong, "Efficient self-consistent DFT calculation of nondynamic correlation based on the B05 method", Chem. Phys. Lett., 493, 381 (2010). [PDF]
  21. J. Kong, Z. Gan, E. Proynov, M. Freindorf, T. R. Furlani, "Efficient computation of the dispersion interaction with density functional theory", Phys. Rev. A, 79, 042510 (2009). [PDF]
  22. E. Proynov and J. Kong, "Analytic form of the correlation energy of the uniform electron gas", Physical Review A, 79, 014103 (2009). [PDF]
  23. H. Lee Woodcock, W. Zheng, A. Ghysels, Y. Shao, J. Kong, and B. R. Brooks, "Vibrational subsystem analysis: A method for probing free energies and correlations in the harmonic limit", J. Chem. Phys., 129, 214109 (2008). [PDF]
  24. E. Proynov, Zhengting Gan, and J. Kong, "Analytical Representation of Becke-Roussel Exchange Functional", Chem. Phys. Lett., 455, 103 (2008). [PDF]
  25. M. Freindorf, Y. Shao, J. Kong, T.R. Furlani, "Combined QM/MM Calculations of Active-Site Vibrations in Binding Process of P450cam to Putidaredoxin", J. Inorg. Biochem. 102, 427 (2008). [PDF]
  26. E. Proynov, and J. Kong, "Improved meta-GGA correlation functional of the Lap family", J. Chem. Theory Comput., 3, 746 (2007). [PDF]
  27. Y. Shao, and J. Kong, "YinYang Atom: a simple combined ab initio quantum mechanical molecular mechanical model", J. Phys. Chem. A, 111, 3661 (2007). [PDF]
  28. M. Freindorf, M. D. Jones, Y. Shao, J. Kong, T.R. Furlani, "Large-Scale QM/MM Calculations of Electronic Excitations in Yellow Protein, Toward Petascale Level of Protein Calculations", Proceedings of the 7th International Conference on Bioinformatics and Bioengineering, Harvard Medical School, Boston, MA, USA, 614 (2007). [PDF]
  29. Y. Shao, et al, "Advances in methods and algorithms in a modern quantum chemistry program package", Phys. Chem. Chem. Phys., 8, 3172 (2006). [PDF]
  30. J. Kong, S. T. Brown and L. Fusti-Molnar, "Efficient Computation of Exchange-Correlation Contribution in Density-Functional Theory", J. Chem. Phys., 124, 94109 (2006). [PDF]
  31. R P. Steele, Y. Shao, J. Kong, R. A. Distrasio Jr., and M. Head-Gordon, "Dual Basis Second-Order Moller-Plesset Perturbation Theory", J. Chem. Phys., 125, 074108 (2006). [PDF]
  32. M.Freindorf, Y.Shao, J.Kong, T.R.Furlani, "Combined QM/MM Studies of Binding Effect of Cytochrome p450cam to Putidaredoxin", Proceedings of the 2006 International Conference on Bioinformatics and Computational Biology, Las Vegas, USA, 391 (2006). [PDF]
  33. M. Freindorf, Y. Shao, S. T. Brown, J. Kong, T. R. Furlani, "A Combined Density Functional Theory and Molecular Mechanics (QM/MM) Study of FeCO Vibrations in Carbonmonoxy Myoglobin", Chem. Phys. Lett., 419, 563 (2006). [PDF]
  34. S. T. Brown, L. Fusti-Molnar, J. Kong, "Interpolation Density Values on a Cartesian Grid: Improving the efficiency of Lebedev Based Numerical Integration in Kohn-Sham Density Functional Algorithms", Chem. Phys. Lett., 408, 395 (2005). [PDF]
  35. L. Fusti-Molnar, J. Kong, "Fast and Accurate Coulomb Calculations with Gaussian Functions", J. Chem. Phys., 122, 074108 (2005). [PDF]
  36. S.T. Brown, J. Kong, "IncDFT: Improving the efficiency of density functional theory using some old tricks", Chem. Phys. Lett., 408, 395 (2005). [PDF]
  37. M. Freindorf, Y. Shao, T. R. Furlani, J. Kong, "Lennard - Jones Parameters for Combined QM/MM Method Using B3LYP/6-31+G*/AMBER Potential", J.Comp.Chem. 26, 1270 (2005). [PDF]
  38. P.P. Korambath, J. Kong, T.R. Furlani, and M. Head-Gordon, "Parallelization of Analytical Hartree-Fock and Density Functional Theory Hessian Calculations", Mol. Phys., 100, 1755 (2002). [PDF]
  39. T.R. Furlani, J. Kong, and P.M.W. Gill, "Parallel SCF calculations with Q-Chem.", Comp. Phys. Comm, 128, 170-177 (2000). [PDF]
  40. J. Kong, C. A. White, A. I. Krylov, C. D. Sherrill, et al, "Q-Chem 2.0: A high-performance ab initio electronic structure program", J. Comp. Chem. 21, 1532-1548 (2000). [PDF]
  41. J. Kong and R.J. Boyd, "The convergence of basis set contractions: A case study of the molecular hyperfine structure of 14NH2", J. Chem. Phys., 107, 6270 (1997). [PDF]
  42. J. Kong and R.J. Boyd, "The 2Σ+ states of HBeO, HMgO and HCaO", J. Chem. Phys., 104, 4055 (1996). [PDF]
  43. J. Kong and R.J. Boyd, "CaOH has a second linear structure, HCaO", J. Chem. Phys., 103, 10070 (1995). [PDF]
  44. J. Kong, R.J. Boyd and L.A. Eriksson, "Re-examination of the hyperfine structure of NH2", J. Chem. Phys., 102, 3674 (1995). [PDF]
  45. J. Kong, L.A. Eriksson and R.J. Boyd, "A density functional theory study of the hyperfine structures of the atoms B to O and the species NH2 and NH3+", Chem. Phys. Lett., 217, 24 (1994).
  46. J. Kong and J.M. Yan, "The effects of atomic multipole moments obtained by the potential-derived method on hydrogen-bonding", Int. J. Quant. Chem., 46, 239 (1993).
  47. Daren Zhang, Ji'an Wu and Jing Kong, "Theoretical studies of the C60 and alkali metal-containing complexes C60M", Chin. Phys. Lett., 10, 143 (1993). [PDF]
  48. J. Kong and J.M. Yan, "Investigation on the intermolecular electrostatic interactions of some polar molecules with cumulative potential-derived atomic multipole method", Int. J. Quant. Chem., 42, 489 (1992).
  49. J. Kong and J.M. Yan, "Investigation on electrostatic interaction between NH3 and HF using cumulative potential derived atomic multipole method", Chin. Sci. Bull., 37, 993 (1992).
  50. J. Kong and J.M. Yan, "Cumulative potential-derived atomic multipoles", Chin. J. Chem., 9, 310 (1991).
  51. J. Kong and J.M. Yan, "Potential-derived atomic multipole distribution", Chin. Sci. Bull., 36, 201 (1991).